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of TEM Modes

NOBUO NAGAI, MEMBER, IEEE, AND AKIO MATSUMOTO, FELLOW, IEEE

Absfract—A restatement of mathematical considerations of TEM

modes on an n-wire line is presented. An n-wire line inside a shield-
ing conductor or over a ground plane supports n independent TEM

modes which can be determined by obtaining eigenvectors on the

n-wire line deduced from the characteristic admittance matrix. It
is shown conclusively that the TEM modes are determined by the

geometrical arrangement of then wires as well as by the manner of
excitation on the n-wire line. Power division ratios on each wire and
terminating admittances for output ports of each wire are also dis-
cussed, and it is shown that one can excite a TEM mode similar to

an even mode and n — 1 TEM modes, each of which resembles an

odd mode, on the n-wire line.
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Zt= [111.. .In2]’ Current vector for output ports of

n-wire line.

v. = [Vk?.. -Vma]t Voltage vector for input ports of

ITI.

1. = [Il... . In.]’ Current vector for input ports of

ITI.

[T] Transformation matrix of ITI.
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Voltage vector for ith basic TEM

mode.

Current vector for ith basic TEM
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Voltage vector for ith modified

TEM mode.

Current vector for ith modified
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n X n unit matrix.

Eigenvalues for [V].

Orthonormal eigenvector for [q].

Eigenvalues for [A]-l[V][A ]-’

and [A ]–z[v].

Orthonormal eigenvector for

[A]-’[V][A]-l.

Orthonormal eigenvector for

[A]-2[7].

Positive constant.

I. INTRODUCTION

T
HE n-way HPD described by Wilkinson [1] splits

an input signal into n equiphase and equiamplitude

output signals. Parad and Moynihan [2] presented two-

way HPD’s with the output signals in phase and with

arbitrary amplitude ratios. Cohn [3] presented brc~ad-

band two-way HPD’s with equiamplitude output signals.

Yee et al. [4] presented broad-band n-way HPD’s with

equiamplitude output signals. Ekinge [5] presented

broad-band two-way HPD’s with arbitrary output signals.

Tetarenko and Goud [6] presented an n-way HPD with

arbitrary output signals in the Appendix of their paper.

All these papers synthesize TEM-mode HPD’s. The ob-

jective of this paper is to present a restatement of mathe-

maticzJ consideration of TEM modes on an n-wire line.
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The n-way HPD’s should be designed by making use of

multiwire lines which include not only multiccmpled

lines but also uncoupled lines. An n-wire line inside a

shielding conductor or over a ground plane supports n

independent TEM modes. It is discussed in Section II

that the n independent TEM modes can be determined

by obtaining eigenvector on the n-wire line deduced from

the characteristic admittance matrix. It is shown in

Section II that a set of TEM modes is determined by the

geometrical arrangement of the n wires as well as by the

manner of excitation on the n-wire line.

In order to establish synthesizing methods of the n-

way HPD’s, it is necessary to know power division ratios

on each wire of the n-wire line and how to choose ratios

among terminating admittances for outputs of each wire.

The problem of power division ratios is discussed in

Section II, and the ratios among terminating admittances

in Section III.

Many papers analyze and synthesize n-way HPD’s

including two-way HPD’s by making use of an even- and

an odd-mode’ equivalent circuit [3]–[5]. It is discussed

in Section IV that one can excite a TEM mode similar to

an even mode and n – 1 TEM modes, each of which

resembles an odd mode, on the n-wire line.

11, TEM MODES ON LOSSLESS TRANSMISSION

MULTIWIRE LINE

This section describes TEM modes on a lossless trans-

mission multicoupled or multiwire line and an ITI that

excites such TEM modes on the multiwire line.,,

A. Equations of Transmission of a Multiwire Line ~7_J

The following assumptions will be introduced on any

multiwire line comprising the circuit under consideration.

1) All constituent conductors are perfectly conductive.

2) The dielectric space surrounding the conductors has

uniform dielectric constant c and permeability y p, and is

perfectly lossless.

3) The arrangements of the conductors and dielectric

are uniform in the direction along the line.

The transmission equations for a multiwire line are well

known, and if the line satisfies the preceding three con-

tions, then the propagation of waves on the line can be

represented by a real symmetric characteristic admittance

matrix [v] ““or a characteristic impedance matrix [t]

and the transformed complex frequency parameter h, and

the transmission equations reduce merely to the matrix

extension of those for coaxial lines. An n-wire line is an

(n,n) port as shown in Fig. 1, and its transmission equation

‘a’
Fig. 1. An n-wire line.

can be expressed as

where

v. =

vlo’

V20

.

V. = c Vt+ S[!?]z,

Zo= S[v]vt + Czl

Io = [

II.

120

[:

.

I no 1

It =

(la)

(lb)

‘IIz

121

Id I

c=cOse .s=jsin O A=jtant3.

[~], [f] is then X n symmetric matrix, [q] = [~]-’ and
0 is the electrical length of the line section.

The characteristic admittance matr~ [v] is represented

as

[q] =

ml
—q12 . . .

— m.

— ?712 ~22 . . . — ?72.

. . . .

I . . .

1
. . . .

— Vln —?2% .“. Vnn-

Let’s define ~ie(i = 1,.. .,n) as

j+i

vie = qii + E (–qij).
i

In case of i > j, q~$ becomes qj~. This matrix

dominant, that is

nij 20, (ijj = 1,.. .,n)

‘V;. 20, (i= 1,...,n).

B. Ideal Tran.sjormer interconnection

(2)

(3)

[q] is hyper-

(4a)

(4b)

It is well known that an (m,,n) -port ITI, shown in Fig.

2, transforms voltages and currents according

following expressions by using a transformation

[T]:

Va = [T]’Vo [T]Ia = I.

where Vo, l., given by (1)

to the

matrix

(5)

v. = [VI.,.. .,V?J z. = [11.,. . . ,Ima]t, m<n.

[T] is an n X m real matrix, and [T]’ shows the transpose

of [T].

It is well known that one can transform a multiport

network (for example, multiwire transmission line) into

a diagonal network by using ITI. That is, an ITI can be

used as a decoupling circuit among input ports of multi-

port network. An ITI can also be used as a power divider

which distributes an input signal from an input port

among output ports.
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P,L.’ = [plk’...p]k’]’, (k = 1,...,??2)

3’03“:’0
then the input ports are decoupled from one another

and the input power from an input port lC is distributed

among the n output ports in the pro~ortion

(a) (b)

Fig. 2. ITI and conductance for output ports.

In order to consider that an ITI can be used as a

decoupling and power dividing circuit, we need the net-

work shown in Fig. 2 which is constituted with an (m,n) -

port ITI and n conductance.

1) The case where all output ports are terminated in

equal conductance G., then

10 = GOVO. (6)

Let’s make use of the ITI satisfying

IT] = ~P. . . .P~] (7)

where PI,. . . .Pm are orthogonal vectors, and

Pk = [Plk” - ‘Pnk]’, (k = 1,...,rn).

Substituting (6) and (7) into (5) yields

[1
PI’

.

J7== Go-l . [R . . .Pm]za. (8)
.

pmt

That is, the input ports are decoupled from one another.

In this case, the input current Ika from the input port k is

transformed as

PbIba = 1.. (9)

By using (6) and (9), one can get

Ibvb:... :I~oV~o = plk2: “ ““ :pnL2. (lo)

That is, the input power from an input port k is distributed

among the n output ports in the proportion of (10).

In this case, al, . . . ,a% can be chosen arbitrarily. However,

for the sake of simplicity, let them satisfy the following

relations:

[A] = diag [al,.. o,a~] (15)

where

ak>o, (k=l) . . ..n) and a,’+ ..”+ a~’=ll.

C. TEM Modes on a Multiwire Line

An n-wire line inside a shielding conductor or over a

ground plane supports n independent TEM modes.

This paper describes how one can determine independent

TEM modes on a n-wire line. We suppose that a chara-

cteristic admittance matrix [n] of the n-wire line is given.

A TEM mode is determined with a voltage vector and a

current vector on the n-wire line. So we suppose the n-

wire line supports a TEM mode (ith TEM model) with

voltages VW””s, Uni and currents J~iY” “ “,Jni on the wires

as shown in Fig. 3, and ratios upi/uvi and J~i/Jvi (w =

1,... ,n) are given by real numbers, respectively.

The orthogonalit y condition among TEM modes can be

given in the following definition [8].

Be@,d~on 1: The condition that any two of such

TEM modes (ith and jth) are orthogonal or independent,

is given by

I=o, (i # j)
uitJ3 (16)

# o, (i= j)

where

Ji’ = [Jli. . .J~i].

The vectors Pl,.. ., Pm may not necessarily be ortho-
(End of definition.)

normal. However, for the sake of simplicity, let them be

orthonormal vectors
. .

If the n-wire line is terminated on its output side

(i # j)
(right-hand side of Fig. 1) with a conductive circuit [G]

(i,j = 1,...,m). (11) equal to [q], then the voltage vector U. and the current

(i = j) vector Jo on the input side satisfy
{

o,
piipj =

1,

2) Next consider the case where all output ports are J. = ~q]i% = ~G]U.. (17)

not always terminated in equal conductance; that is, the The matrix [~] has n eigenvalues crl, ”””, afi which are
case where the ports are terminated in conductance

a12G0,. . . ,a~2Go, then

Z. = [A ]’GoVo (12) II
J2 i !-l.

nt

I Ii . . .

where [A] = diag [al,. . . ,an]. c1
N

Let’s make use of the ITI satisfying

E

“11 “2t
Uni

[T] = [A][P/. “ “Pm’] (13)
.

where PI’,. ... P~f are orthonormal vectors, and Fig. 3. Currents and voltages for ith TEM mode on n-wire line.
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all real and positive, because the matrix is hyperdominant.

The eigenvectors corresponding to the eigenvalues can be

obtained instantly. If m is the l-ple eigenvalue, then there

are 1 linear independent eigenvectors corresponding to

ai. These 1 vectors can be made to constitute orthonormal

eigenvectors by the Schmidt process [10]. Thus one can

obtain a set of n orthonormal eigenvectors PU. ””, P..

The eigenvalues and the eigenvectors satisfy

[Tl]Pi = a,Pi, (i= 1,...,n). (18)

Consider a network which is constituted with an ITI,

the n-wire line, and the conductive circuit [G] shown in
Fig. 4. Let’s suppose that the ITI is composed with the

eigenvectors PI, . 00,P.. That is,

[T] = [PI.. .Pn]. (19)

The kth input voltage Vka and current Ika are trans-

formed, respectively, into a voltage vector uk and a

current vector Jh on the n-wire line by the vector Pkas

Uk- = Phvka Jk= pkIka, (k = 1, . . .,n). (20)

Let’s consider two TEM modes, with voltage vectors

U; and Uj, and current vectors Ji and Ji, which are

excited with ith and jth input ports by using transforma-

tion vectors Pi and Pi, respectively.

orthonormal vectors, Ui and Jj satisfy

\

= o,
uitJi = pitpiviaIia

# o,

so that Ui and JI satisfy the condition

As Pi and Pj are

(i # j)

(21)

(i= j)

of orthogonality of

the TEM modes, as given in Definition 1.

Definition .2: The set of TEM modes that satisfy (20)

is defined to be a set of basic TEM modes.

(End of definition.)

Consider the case where each wire of the n-wire line

supports only a kth basic TEM mode. By using (17), the

voltage vector uk and the current vector ]k of the lcth

TEM mode satisfy

Jb = ~?)]uk. (22)

By using (18), (20), and (22), one has

Jk = ~~]uk = ~T]pk~ka= akpkvka, :. Jk= ~kuk.

(23)

This equation can be rewritten as

Jlk = ffhulk
.

.

.

Jnh = ah unk. (24)

Therefore, if a TEM mode on the n-wire line is determined,

then we can define “characteristic wire admittances” for

each wire of the n-wire line. In the case of the basic

TEM mode, the characteristic wire admittances are all

equal to Ctk.
Equation (23) is very similar to (6). The differences

‘no~
Fig. 4. Network constituted with ITI, n-wire line, and conductive

circuit.

between them are the conductance Go of (6) and the

characteristic wire admittances CZk.So the n-wire line

network supporting the basic TEM modes is almost

identical to the network which is explained in 1) of

Section II-B.

D. Modi$ed TEM Modes

We describe the one that can introduce TEM modes

other than the basic TEM modes in this section. Take the

positive diagonal matrix [A] defined by (15), and let’s

take up a new matrix [A ]–l[q][A ]–l. This matrix has n

eigenvalues &,. . . JL which are all real and positive,
because the matrix [q] is hyperdominant. We can obtain

n orthonormal eigenvectors Pi’,. . . .Pm’ of the matrix

corresponding to the eigenvalues. Then the following

relationships are satisfied:

[A]-l[rl][A]-lPk’ = &Pk’, (k = 1, . . .,n). (25)

Consider the network shown in Fig. 4. In this case, let

the transformation matrix [T] of the ITI be presented as

[T] = [A][PI’” “ “Pn’]. (26)

The kth input voltage Vk= and current Ik. are trans-

formed, respectively, into a voltage vector Uk’ and a

current vector Jk’ on the n-wire line by the transformation

matrix as

Jb’ = [A ]Pk’Ika

Uk’ = [A]-xpk’vka,

so the ith voltage vector U<’

J; satisfy

1

= o,
U[tJjf

# o,

(27a)

(k = 1,...,n) (~7b)

and the jth current vector

(i # j)

(28)
(i=j).

That is, the set of voltage vectors Uk’ and current vectors

Jk’(k = 1,... ,n) satisfy the orthogonal condition of the
TEM mode, given by Definition 1.

Definition 3: A set of TEM modes that satisfy (27)

is called a set of modified TEM modes.

(End of definition.)

By using (17), (25), and (27), Jk’ and Uh’ should satisfy

Jk’ = [T] uk’ = [q][A ]–lpk’vka= [A ]Bkpk’vka,

:. Jk’= @k[i4]2u,k’. (29)

This equation can be rewritten as
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Jlk’ = Bkalzulk’
.
.
.

Jmk’= fikanzunk’. (30)

That is, if a modified TEM mode on the n-wire line is de-

termined by using the matrices [q] and [A], the char-

acteristic wire admittances for each wire are not necessarily

equal corresponding to al,. . . ,am.

Equation (29) is very similar to (12). The differences

between them are the value of conductance Go of (12)

and the eigenvalue fh. So the n-wire line network sup-

porting the modified TEM modes is almost identical to

the network which is explained in 2) of Section II-B.

The matrix [A] can be chosen arbitrarily under the

condition given by (15). Therefore, it is shown that the

n TEM modes on the n-wire line are determined by the

geometrical arrangements of the n wires (which means

the characteristic admittance matrix [v]) as well as by

the manner of excitation into the n-wire line (which means

the choice of [A]).

III. POWER DIVIDING RATIO AND

DECOUPLING

In the previous section, we considered the TQM modes

on an n-wire line, and it was found that the n-wire line

excited with a TEM mode may be utilized in making a

power divider. In this section, let us take a two-wire line,

for example, and describe how to choose the input and

output admittances for the two-wire circuit shown in

Fig. 5.

The characteristic admittance matrix [V] and the char-

acteristic impedance matrix [{] of a two-wire line can be

expressed as

[i-l =

Now we try to divide the power from an input port

between two output ports on different terminating ad-

mittances by utilizing a modified TEM mode on the two-

wire line. Let’s suppose that the ratios among the termin-

ating admittances are in the proportion of real numbers.

So the admittances are assumed to be a12Yl (k) and

az2Yz(A), respectively, as shown in Fig. 5. Then

~~t = a~2Yl(k) V~~ 122 = a22Yz(X) V2Z. (32)

In the case of the modified TEM modes, the eigenvalues

and the orthonormal eigenvectors of [A ]–’[q][A ]–’

come into question as described in Section II-D. The

matrix [A] should be dlag [al,a2]. Let the eigenvalues be

denoted by 13,and Oa, then these satisfy

91 + P2 = al–2qll + a2–2722 (33a)

(%(32 = al-2a2-2 (v11v22 – 77122). (33b)

357

(a)

10

77/////////////////.///////// ,/ ,

(b)

Fig. 5. (a) Network constituted with ITI, two-wire line, and
admittances for output ports. (b) Its equivalent network.

Let the orthonormal eigenvectors be denoted by

Pi = ~p~py’]’ and P2’ = [P2’ – P;]’ corresponding to

A and A, respectively, and by using (25), one obtains the
following equations:

[-:‘:ILI=’l[l‘34a
[: ‘:1[21=’2[

where pl’2 + p2’2 = 1.

The transformation matrix [T] of the ITI

chosen as

[T] = [A][P;P2’].

By using (5) and (35), one can get

[1[
v-la alpl’

——

V2. a1p2’

[1

alpl’ a1p2’

a2p2’ —a2p1’

a~p2’

1[ 1

Vlo

— a2p1’ V20

Il.

1-[1

Il.
—

12. 120

. (34b)

should be

(35)

(36a)

(36b)

The transmission equations of the two-wire line can be

written

Fl”’r:l+’t Xl ‘“a)

rl=sl:: ‘:IEI+’13‘“b)
Now an input is assumed to be incident on port la.

The input current from port la becomes transformed by

the ITI as

alpl’ll. = 110 a2p2’Ilm = 120. (38)

Substituting (32), (34a), and (38) into (37b) yields
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P-u---d
Fig. 6. Network constituted with ITI, n-wire line, and admittances

for output ports.

Vll = p< V21= n“

Il. al(+i + cY2(x)) Il. a2(s@1+cY2(k)) “

Substituting (39) into (37a), and

VI. = Cf?l + sYt(k)

Il. B1(5’B1 + CY1(A))

(39)

by using (36a),

v2a
11.

—=0. (40)

Thus the two input ports (port la and 2a) of the circuit

shown in Fig. 5 are decoupled, and the input impedance

looked in from the port la can be obtained by (40).

By using (32) and (39), the ratio of power division of

the output ports can be obtained as

Vltllt pl’z— . .
V21121 p2’2

(41)

and is constant for all frequencies. Therefore, the circuit

consisting of an ITI and a two-wire line becomes a power

divider having a constant power division ratio at all fre-

quencies.

In (40), if the value of an admittance YZ (x) is equal to

a value of conductance, and moreover

Y1 = /3, (42)

then the input impedance looking in from the port la

becomes resistance 1/(?1, so the circuit can be matched

at port la for all frequencies.

These results can be easily extended to a circuit having

n output ports. That is, consider the characteristic ad-

mittance matrix given by (2) and the diagonal matrix

[A] given by (15). Next one obtains @+ and Pk’ (k =

1,... ,n) by using the method described in Section II-D.

If one terminates admittances al’Y1(X),. . . ,a.’Yr(X),

respectively, to the output ports 11,. . . ,nl shown in Fig. 6,

then the input ports la,.. . ,na are decoupled from each

other and the ratio of power division to the output ports

is obtained as given by (14).

IV. EVEN AND ODD TEM MODES ON THE n-WIRE

LINE

It is well known that even and odd TEM modes exist

on a coupled line or two-wire line. If the two-wire line

supports only an odd TEM mode, current doesn’t flow

on a shielding conductor (or over a ground plane). This

section describes how one can excite n — 1 TEM modes,

each of which resembles the odd mode, excluding only a
TEM mode on an n-wire line.

A. Even and Odd TEM Modes for Basic TEM Modes

The characteristic admittance matrix [q] of an n-wire

line can be represented by (2). Elements vi. (i = 1,”s s,n)

of this matrix are defined by (3).

The reduction polynomial for obtaining eigenvalues of

[q] can be presented as follows:

I[v]–ai%[=

me — ~ — 7712 . . . — m.

712e — a .q22-~ . . . — 72.

. . .

. . .

. .

,?ne — a —q2n . . .
V.. — a

(43)

where En: n X n unit matrix.

If every vte (i = 1,... ,n) is equal to each other, then

the reduction polynomial has a root (an eigenvalue) au

which satisfies

a!u=’q~e=. ..=~neo (44)

The orthonormal eigenvector Pu corresponding to this

eigenvalue should be given as

P.’= -&[l...l]. (45)

There are n – 1 orthonormal eigenvectors which are

different from Pu. Let such eigenvectors be represented as

?’k~ = [p~~. . .pfi~], (k= 1,...,n– 1). (46)

Since Pu and P, (k = 1,... ,n – 1) are all orthonormal

eigenvectors,

5 pj, = o, (k= 1,.. -,n– 1) (47)
~=1

should be satisfied for Pk.

The current vector Jk on the n-wire line excited by the

transformation vector Pk is represented by (20). So the

currents Jlh,. . . ,Jsk on then wires should satisfy

J,, + J,, i- . ..+ J.. =O, (k = 1,...,n – 1). (48)

That is, the resultant return current does not flow on a

shielding conductor for the basic TEM mode correspond-

ingto P, (k = 1,. . . ,n — 1). All of these n — 1 basic

TEM modes are similar to an odd mode on a two-wire

line. On the other hand the basic TEM mode excited with

P. is similar to an even mode, so we call the TEM mode

an even mode.

B. Even and Odd TEM Modes for Modijied TEM Modes

We consider the case where qle,. . . ,qne are not always

equal to each other. So let’s assume that T1.,. . . ,q~~

satisfy
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‘Vke= a’k2’Oej(k = 1,...,n) (49)

where q. is positive constant.

Let’s take a diagonal matrix [A] given by (15), and

take up a new matrix [A ]–z[q]. The reduction polynomial

for obtaining eigenvalues of [A ]-2[n] should be presented

as follows:

\ [A]-2[q] – BEn I

.

I

al–2~1e — B — al–2q12 ● . . —al–zqln

a2–2q2. — /3 a2-27722— B . . . —a2–2r12n
. . . .

. . . .

. . . .

am–2rln6— ~ —am–2q2n . . . an–2q~~ — /3 1

(50)

By substituting (49) into (50), one can obtain an eigen-

value & which satisfies

,& = Vt?. (51)

Let other n – 1 eigenvalues be denoted by /?kj
(k = 1, ..~,n– 1).

The orthonormal eigenvector Q% corresponding to the

eigenvalue & should be given as

-@’= +[l...l]. (5?)

Let other n – 1 orthonormal eigenvectors be denoted

by Q~(k= l,”””,n– 1).
The matrix [A ]–2[V] can be represented as

[A]-2[n] = [A]-l([A]-’[q][A]-l) [A]. (53)

Therefore, the reduction polynomials for [A ]-2[n] and

[A ]-’[V][A ]-1 are invariant to each other. That is, the

eigenvalues of [A ]–l[q][A ]-1 also are Bti and Ph

(k = 1,”..,n – 1). So the orthonorrnal eigenvectors

Pu’ and Pk’of [A ]–l[q][A ]–’ must satisfy the following

equations:

Q. = [A]-lP.’

@ = [A]-lP~’, (k= l,o”c,n– 1). (54)

The voltage vectors Uk’ on the n-wire line excited with

modified TEM modes are represented by (27b). Let a

voltage vector U.’ on the n-wire line ~e excited by using

the transformation vector [A ]–lPut, then the following

relationships among n voltages on the n wires satisfy

ulu’ = u2u’= . . . = u..’ (55)

where

Uu’t = ~ulu’ . . . Unu’].

The TEM mode whose voltages on the n-wire line are

given by (55), is similar to an even mode, so we call the

TEM mode an even mode.

The orthogonality condition among TEM modes can

be given by Definition 1 or (16). Therefore, n – 1 current

vectors excluding the even mode must satisfy the following

equations:

Ju’ + Jw’ + ...+Jnk’=0, (k=l,...,1)l)

(56)

where

Jh” = ~JM’ s“ “Jn~’].

That is, all of these n – 1 modified TEM modes are

similar to an odd mode.

V. CONCLUSION

This paper has presented a restatement of mathematical

consideration of TEM modes on the n-wire line deduced

from the characteristic admittance matrix. The following

results have been shown conclusively: 1) n independent

TEM modes can be determined by obtaining eigenvectors

on the n-wire line; 2) the TEM modes are determined by

the geometrical arrangement of the n wires as well as by

the manner of excitation on the n-wire line; 3) power

division ratios on each wire; 4) ratios among terminating

admittance for output ports of’ each wire; and 5) one

can excite ‘one TEM mode similar to an even mode and

n— 1 TEM modes, each of which resembles an odd mode,

on then-wire line. These results maybe applied to establish

synthesizing methods “for broad-band n-way hybrid power

dividers with arbitrary output signals. ‘
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